

A Status Update for FLASHFlux and SOFA working groups including Data Usage Highlights from new POWER portal

Paul Stackhouse, David P. Kratz, and Takmeng Wong, (NASA LaRC)

PC Sawaengphokhai, Shashi Gupta and Anne Wilber (SSAI)

POWER Team: Jason Barnett, Tyler Bristow, and Bradley MacPherson (Booz-Allen-Hamilton);
David Westberg and James Hoell, (SSAI)

Tonya Davenport and Fenny Wang and the Atmospheric Science Data Center Team (SSAI)

Surface-Only Flux SSF Products

- CERES SSF includes several Surface—Only Flux Algorithms (SOFA) to compute SW and LW surface fluxes at footprint resolution
- The SOFA algorithms include (Kratz et al., 2010):

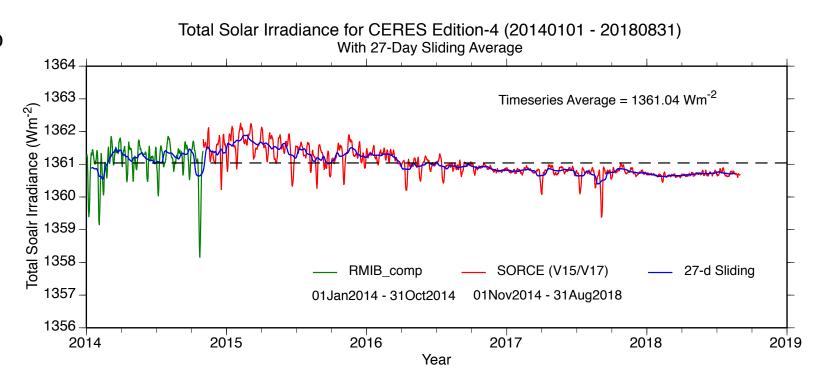
		Model A	Model B	Model C
0.11	Clear	Li et al. (1993)	LPSA (Gupta et al. 2001)	
SW	All-Sky		LPSA (Gupta et al. 2001)	
LW	Clear	Inamdar and Ramanathan (1997)	LPLA (Gupta et al. 1992, 2010)	Zhou-Cess (Zhou et al., 2007)
	All-Sky		LPLA (Gupta et al. 1992, 2010)	Zhou-Cess (Zhou et al., 2007)

LPSA/LPLA = Langley Parameterized SW/LW Algorithm

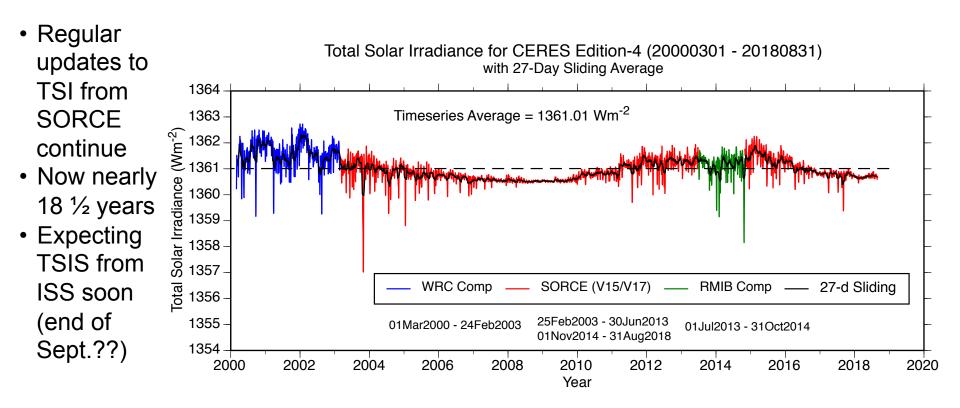
The SOFA group actively updates and validates these data products

Ed4 LP (Model B) Surface-Only Flux Algorithms

- Systematic improvements to LPSA (SW Model B) Model For Ed4:
 - Key Input changes include TOA albedo map and aerosol properties using monthly and daily MATCH/OPAC datasets
 - Key algorithm changes include Rayleigh scattering formulation and revised cloud transmission formula
- Systematic improvements to LPLA (LW Model B) Model For Ed4:
 - Key algorithm changes include lapse rate/ inversion strength constrained to +/- 10K/100hPa (e.g., Gupta et al. (2010)).
- SOFA group Ed4 editing paper including updated descriptions and validation results


Update summary for LPSA and LPLA algorithms for Ed4A

CERES 2B	CERES 4A
48 month ERBE	70 month Terra
46 month Terra	70 month Terra
46 month Terra	70 month Terra
Instantaneous	Monthly average
CERES 2B	CERES 4A
LPSA	Briegleb-type
Terra Ed2	Terra/Aqua Ed4
Aqua Ed2	Terra/Aqua Ed4
WCP-55	MATCH/OPAC
Original LPSA	Bodhaine et al (1999),
	JAOT.
0 to 500 DU	0 to 800 DU
	New
0.80	0.75
No	Maximum Lapse Rate
	10K/100ĥPa
No	Maximum Inversion
	Strength -10K/100hPa
	48 month ERBE 46 month Terra 46 month Terra Instantaneous CERES 2B LPSA Terra Ed2 Aqua Ed2 WCP-55 Original LPSA 0 to 500 DU 0.80 No


TSI Updates For CERES Processing

 Regular updates to TSI from SORCE continue

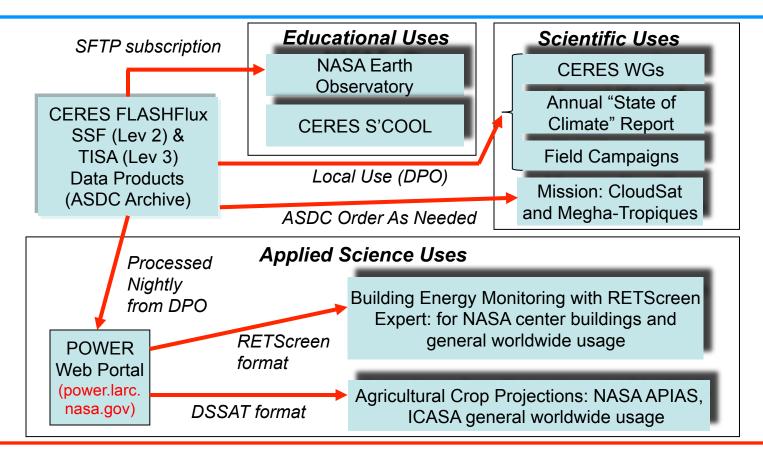
TSI Updates For CERES Processing

CERES FLASHFlux Overview

FLASHFlux Overview

- Uses CERES based production system through inversion
- Most recent calibration projected forward
- LPSA/LPLA SOFA algorithms for surface fluxes

FLASHFlux Objectives


- SSF products within 4 days
- Global 1x1 daily averages from a FF TISA (uses a running 3-day average); goal: 6-7 days latency

FLASHFlux Usages

- Primarily used for applied science and education
- Supports also QC for selected missions
- TOA gridded fluxes; normalized to TOA EBAF for annual "State of the Climate" assessments.

FLASHFLUX: Schematic of Current Uses

FLASHFlux v3C Status

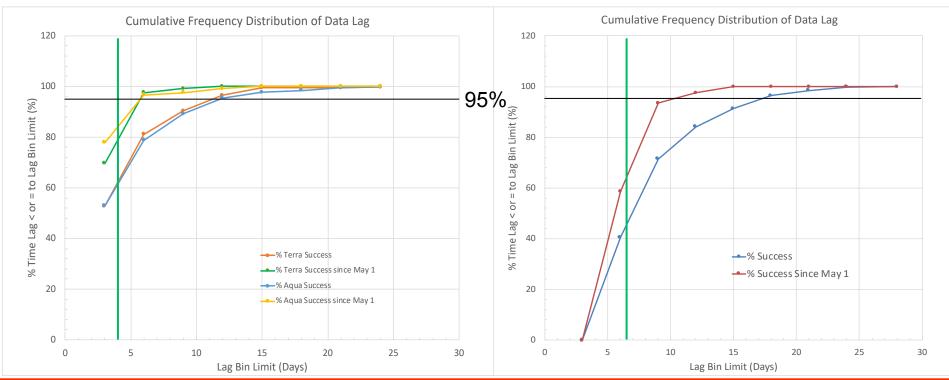
Production with v3C (MODIS C5/C6/C6.1) (since Jan 1, 2017)

- Now uses FP-IT (GEOS 5.12.4) and MODIS Collection 6.1 (after March 1, 2018)
- FLASHFlux TISA available via CERES subsetter, ASDC and specialized formats through POWER web portal (power.larc.nasa.gov) 5-6 days latency
- Plan to continue production for 2018 while production adapted to FF v4A

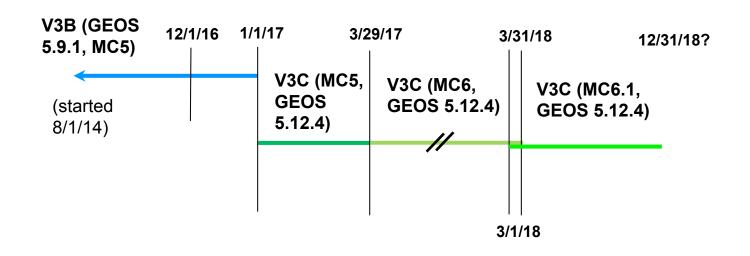
Current Activities

- Development towards V4A => V4A through FLASHFlux SSF being tested (uses MC6.1)
- V3C vs 4A SSF; SW algorithm updates being evaluated
- Finalizing V4A TISA modifications (consistent with Ed 4)

FLASHFlux Data Provision Through POWER:

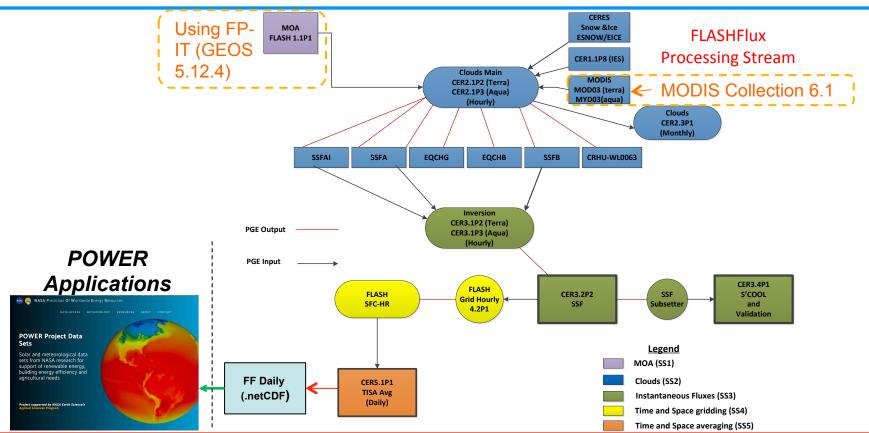

- New POWER web portal released
- Usage Examples from US and World
- Early user metrics

FLASHFlux Latency Success


FF SSF Goal: 4-day latency

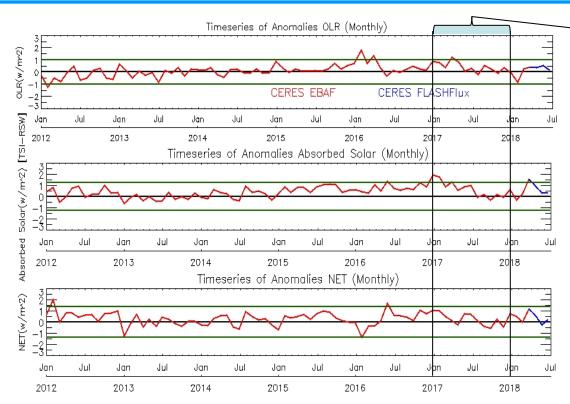
FF TISA Goal: 6-day latency

Current FLASHFlux Versions



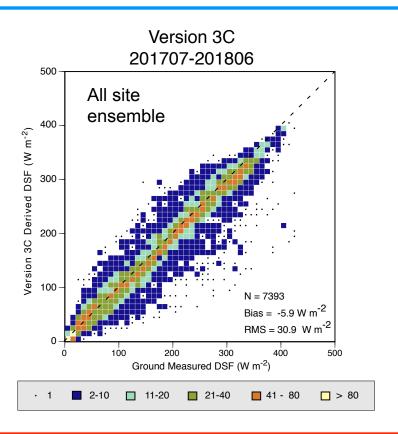
Transitioned from MODIS Collection 6 to 6.1

MC = MODIS Collection 5/6/6.1
GEOS = FP-IT version



Current v3C Production System

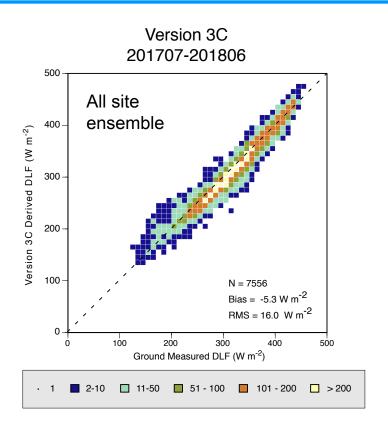
Updated Global Anomaly Time Series



"State of the Climate 2017" (Wong et al, August 2018)

	Global- annual Mean Difference (2017 minus 2016) (W m ⁻²)	2017 Anomaly (relative to Clima- tology) (W m ⁻²)	Inter- annual variabil- ity (2001 to 2016) (W m ⁻²) (2-sigma)
OLR	+0.00	+0.50	±0.60
TSI	-0.10	-0.10	±0.15
RSW	-0.05	-0.80	±0.80
Net	+0.05	+0.20	±0.75

Recent SW Validation: 7/2017- 6/2018



Daily Averaged TISA Comparison

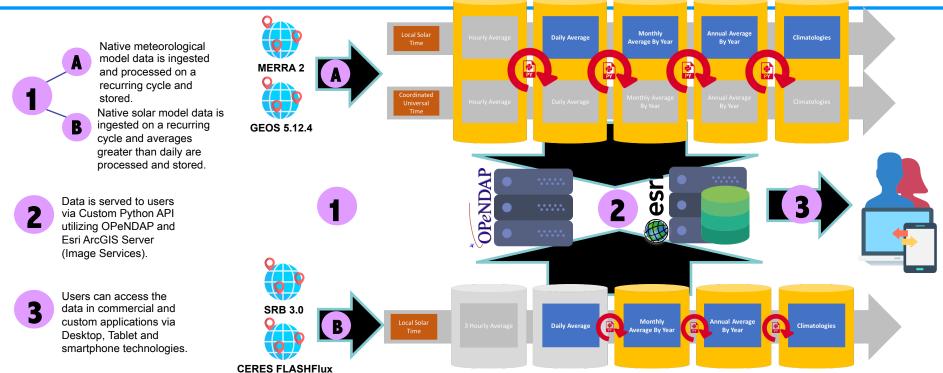
Ensemble Type	Bias (W m ⁻²)	RMS (W m ⁻²)	N
All Obs	-5.9	31.0	7393
Continental	-5.6	28.6	4053
Coastal	-3.7	23.5	1210
Desert	-3.4	23.4	1241
High Latitude	-28.2	60.2	751
Island	13.0	32.0	318

Recent LW Validation: 7/2017 –6/2018

Daily Averaged TISA Comparison

Ensemble Type	Bias (W m ⁻²)	RMS (W m ⁻²)	N
All Obs	-5.3	16.0	7556
Continental	-8.3	15.9	3986
Coastal	-3.1	13.2	1191
Desert	-5.4	13.7	1221
High Latitude	5.6	20.0	838
Island	-3.9	11.7	320

POWER New (GIS) Featuring FLASHFlux Fluxes


(https://power.larc.nasa.gov)

- Using ArcGIS architecture to geospatially enable entire POWER data archive for access to growing Applied Science users.
- Increased spatial/temporal resolutions:
 - Features ČERES FLASHFLUX for Solar & GMAO MERRA-2/GEOS 5.12.4 for meteorological parameters
 - Mapped to ½ x ½ spatial resolution, Low latency Daily Time Series, 30 Year Climatological Averages
- Complete API service (data order using URL)
 - allows for data to be repeatedly requested using a script or from within a user analysis program
- Interactive Data Access Viewer and ArcGIS Image Services
 - User selection of location, parameters
 - Output formats ASCII, CSV, geoJSON, NetCDF4, ICASA, GeoTiff

POWER (v1, GIS): From Data Source to User, Flexible and Scalable

Native Gridded Model Data

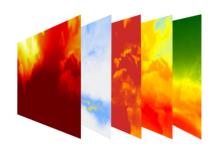
Data Not Distributed*

Data Distributed

2H-3C

Server with Enterprise GeoDatabas

Users Access On Responsive Platform


POWER (v1, GIS): Three Main Data Accessibility Options

Data Access Viewer

Responsive web mapping application providing data subsetting, charting, and visualization tools in an easy-to-use interface.

POWER DATA ACCESS VIEWER

ArcGIS Image Services

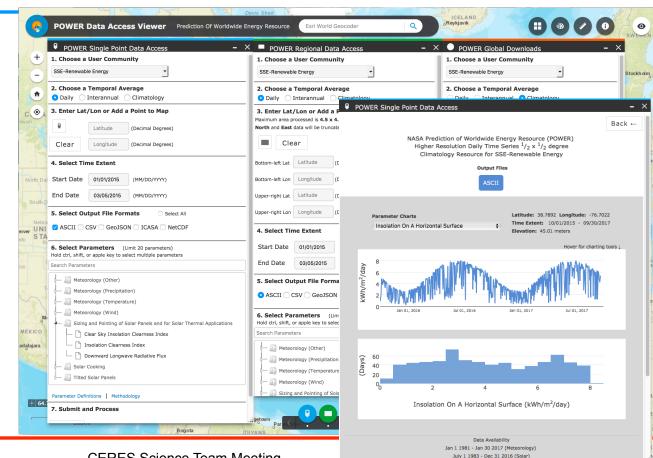
GIS-Ready Time-Enabled ArcGIS Image Services for mapping, visualization, and spatial analysis.

POWER DATA ACCESS VIEWER

POWER API Integration

Access the POWER data holdings through your own custom scripts and scalable applications.

POWER API DOCUMENTATION

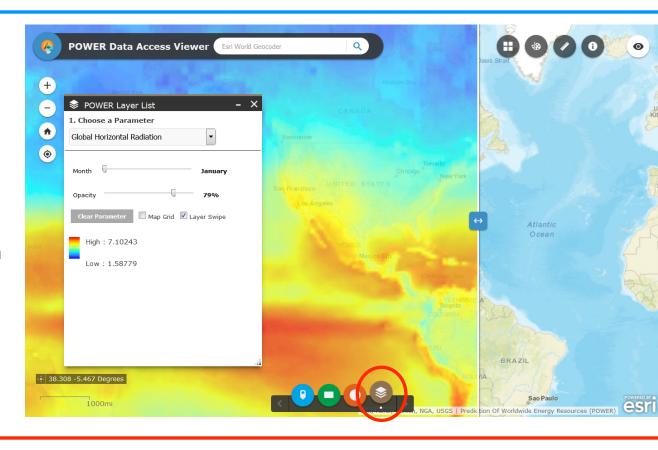

POWER (v1, GIS): Interactive Data Access Viewer

Graphical Data Access

- $\frac{1}{2}$ x $\frac{1}{2}$ deg; within 5-7 days of obs
- multiple parameters from FLASHFlux, GMAO, etc. available
- parameters arranged by application community (i.e., renewable energy, buildings, agroclimatology)
- Multiple data output formats

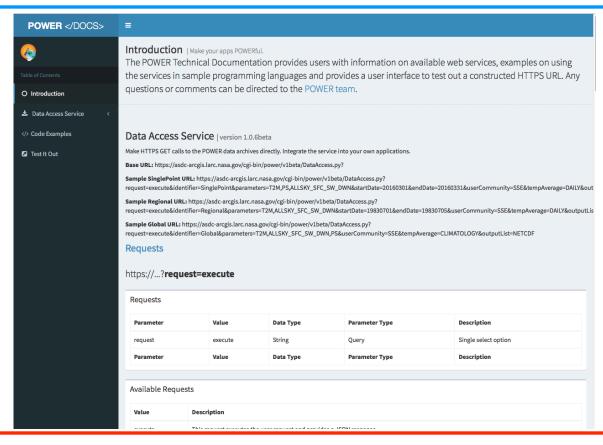
Four Applications:

- Time series at a single point (daily, monthly, up to 30 years*)
- Regional times series (limited area)
- Global climatology (30 year*)
- Layer List (Image Services)



POWER (v8, GIS): ArcGIS Image Services

Image Services


- Migrated current SSE-GIS capabilities (see
 https://asdc-arcgis.larc.nasa.gov/sse/
- OGC compliant (opensource)
- Includes all available parameters for climatological values (ability to click a location and obtain data values)
- Background maps with support for image tools
- 5. Time series slider and swiping tools, etc.
- To Do: implement more services, allow for time series, add on-the-fly

POWER (v8, GIS): Accessing Data with API Service

- Complete instructions to setup up URL based data access (API using OPeNDAP)
- Provide immediate access to the data parameters and time periods required
- Returned file formatted for general software (Excel, GRaDs, MatLab) or customized script/coding for Decision Support Tools (RETScreen, HOMER)

20

POWER Connects to RETScreen

RETScreen Clean Energy Management Software

World's leading clean energy decision-making software

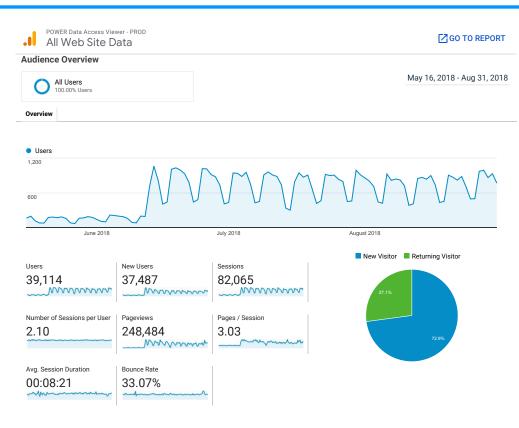
- Benchmark, feasibility, performance and portfolio analysis
- Energy efficiency, heating and cooling, power generation and cogeneration
- Renewable energy and fossil fuels
- Residential and commercial/institutional buildings and industrial facilities
- 36 languages covering 2/3rds world's population

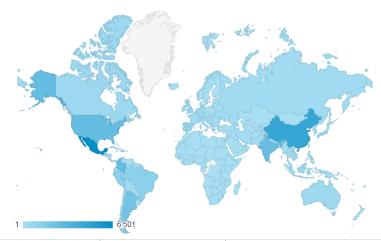
Empowering cleaner energy decisions worldwide

- 575,000+ users in all countries, growing at 50,000+ new users per year
- 1,100+ universities & colleges also use for teaching & research

Well over \$8 billion in direct user savings since 1998

Next generation, *RETScreen Expert*, released September 2018 with updated NASA POWER interface


Example Uses of FF Data Distributed Through POWER


- 3M Company manages 11 facilities using RETScreen and POWER (CERES FLASHFlux) data: "The NASA datasets we use are critical to our energy analysis since they are used as major variables that predict our energy use."
- Renewable energy engineers use daily solar irradiance to assess performance of multiple solar systems for clients of RETScreen users in Ottawa region (e.g., others include MIT, Lockheed Martin, **Corning, Johnson Controls**)
- Hawaii Department of Education implementing program to use RETScreen at all education buildings/schools
- Ontario Schools including Niagara district using RETScreen (https://www.linkedin.com/pulse/schoolboard-energy-managers-lead-way-gregory-j-leng)

POWER Web Site Usage Statistics

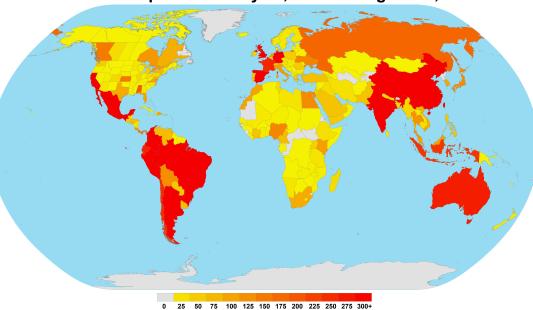
Country		Acquisition	Acquisition			Behavior		
		Users	New Users	Sessions	Bounce Rate	Pages / Session	Avg. Session Duration	
		39,114 % of Total: 100.00% (39,114)	37,659 % of Total: 100.46% (37,487)	82,065 % of Total: 100.00% (82,065)	33.07% Avg for View: 33.07% (0.00%)	3.03 Avg for View: 3.03 (0.00%)	00:08:21 Avg for View: 00:08:21 (0.00%)	
1.	Mexico	6,501 (16.80%)	6,411 (17.02%)	15,839 (19.30%)	29.52%	3.38	00:08:15	
2.	China	4,600 (11.89%)	4,496 (11.94%)	9,407 (11.46%)	35.47%	3.87	00:08:31	
3.	Colombia	2,762 (7.14%)	2,728 (7.24%)	6,016 (7.33%)	31.30%	4.00	00:09:00	
4.	United States	2,731 (7.06%)	2,595 (6.89%)	5,288 (6.44%)	40.37%	1.81	00:05:54	
5.	India	2,579 (6.66%)	2,552 (6.78%)	5,697 (6.94%)	30.21%	3.48	00:07:54	

POWER User Metrics Since Release

POWER Data Request Metrics

POWER Data Requests May 16, 2018 to August 31, 2018 (POWER-GIS v1 on-line May 16, 2018)

Month	Unique Users	Data Requests	Effective Volume (Gb)	
May ⁺	1,074	148,090	87	
June	4,787	695,524	412	
July	7,688	310,585	234	
August	7,985	519,756	673	
Total	19,706*	1,673,955	1,407.09	
% Using FLASHFlux	71.3%	64.6%	14%	


⁺ Includes only May 16 – May 31

^{*} Excludes returning users in multiple months

POWER Data Usage Metrics Since Release

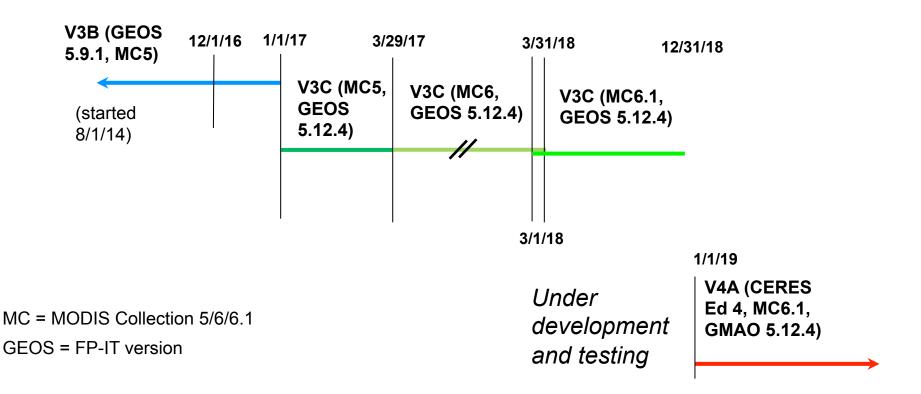
POWER Data Monthly Average Metrics

(POWER-GIS v1 on-line May 16, 2018)

Acquisition Type	Unique Users	Data Requests	Effective Volume (Gb)
API	463	393,510	257
ArcGIS	a	7,642	0.001
DAV	5,556	30,475	121
OPeNDAP	14	13,368	0.9
RETScreen	28 ^b	10,705	9.4
Total	5,977	455,700	388.22
FLASHFlux	4,288	299,861	55.2
% FLASHFlux	71.7%	65.8%	14%

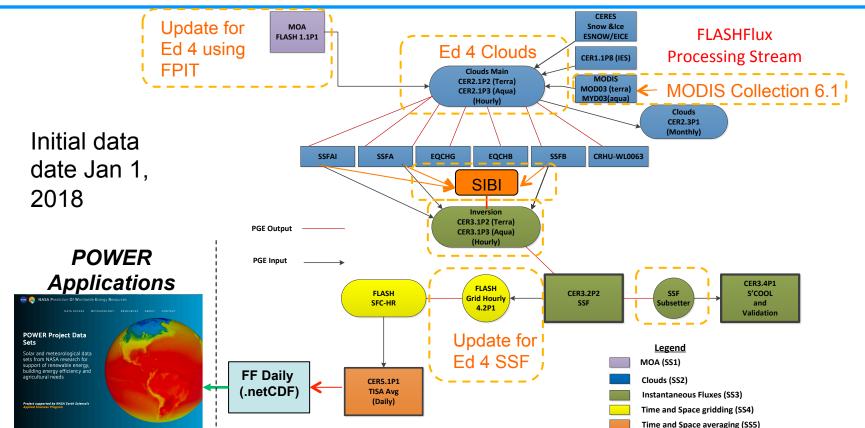
^a Currently untrackable;

^b Old RETScreen version users not counted



Near Future: Moving FLASHFlux Toward V4

Attribute	FF v3C (MC6)	FF v4A	FF v4B
Baseline 1QC	Previous	New calibration	New calibration
GEOS FP-IT input	GEOS 5.12.4	GEOS 5.12.4	GEOS 5.12.4
MOA	Ed 4 compatible	Ed 4 compatible	Ed 4 compatible
MODIS	Collection 6	Collection 6.1	Collection 6.1
Clouds	Ed 2	Ed 4 w/ MC 6.1 calibration (current work)	Ed 4
SIBi (Snow/ICE Brightness Index)	No	Yes	Yes
Inversion (improved ADMs)	Ed 2	Ed 4	Ed 4
Aerosols	MATCH climatology	MATCH climatology	GEOS 5.12.4
Flux Algorithms	Unchanged	Modified SW surface algorithm (current work)	A0, Ap adjustments; new clear- sky TOA & surface albedos (current work)
TISA	Ed 2	Compatible w/ Ed 4 (current work)	Compatible w/ Ed 4 (custom CERES TSI?)
Data Processed	March 28 - present	Planned to begin 1/1/19	None
Validation Results	1/1/17 - 6/30/18		



Moving to FLASHFlux Ed4A

Planned v4A Production System

Summary and Conclusions

FLASHFlux 3C and 4A progress

- Made transition from v3C (MODIS C6) to v3C MODIS 6.1
- Developing v4A compatible with CERES Ed 4; will use to MODIS Collection 6.1
- Evaluating changes to SW MODEL B

• FLASHFlux Applications:

- New web site featuring GIS tools for CERES/FF/POWER and with ASDC to raise discoverability and accessibility scheduled for released on May 16, 2018
- Institutional RETScreen Expert licenses will result in continual usage in large number of US and Canada federal buildings (Johnson Controls), state facilities (HI, MI) and universities (UM, Auburn, Purdue) and corporation facilities (3M)

• FLASHFlux publications:

- 2017 SotC report published
- Future papers: SOFA SSF and FLASHFlux TISA applications including energy

Future Versions

- Developing v4A by migrating CERES Ed 4 Clouds (collection 6.1) and Inversion; must adapt current FF TISA => target October '18
- Longer-term Upgrades (Fall '18): Refine SW Model B, Assess & adapt CERES TSI to FLASHFlux TISA, Assess FPIT aerosol assimilation; NPP SSF

FLASHFlux Web Sites:

https://flashflux.larc.nasa.gov

https://power.nasa.gov & https://power.nasa.gov